Zebrafish Hagoromo mutants up-regulate fgf8 postembryonically and develop neuroblastoma.

نویسندگان

  • Adam Amsterdam
  • Kevin Lai
  • Anna Z Komisarczuk
  • Thomas S Becker
  • Roderick T Bronson
  • Nancy Hopkins
  • Jacqueline A Lees
چکیده

We screened an existing collection of zebrafish insertional mutants for cancer susceptibility by histologic examination of heterozygotes at 2 years of age. As most mutants had no altered cancer predisposition, this provided the first comprehensive description of spontaneous tumor spectrum and frequency in adult zebrafish. Moreover, the screen identified four lines, each carrying a different dominant mutant allele of Hagoromo previously linked to adult pigmentation defects, which develop tumors with high penetrance and that histologically resemble neuroblastoma. These tumors are clearly neural in origin, although they do not express catecholaminergic neuronal markers characteristic of human neuroblastoma. The zebrafish tumors result from inappropriate maintenance of a cell population within the cranial ganglia that are likely neural precursors. These neoplasias typically remain small but they can become highly aggressive, initially traveling along cranial nerves, and ultimately filling the head. The developmental origin of these tumors is highly reminiscent of human neuroblastoma. The four mutant Hagoromo alleles all contain viral insertions in the fbxw4 gene, which encodes an F-box WD40 domain-containing protein. However, although one allele clearly reduced the levels of fbxw4 mRNA, the other three insertions had no detectable effect on fbw4 expression. Instead, we showed that all four mutations result in the postembryonic up-regulation of the neighboring gene, fibroblast growth factor 8 (fgf8). Moreover, fgf8 is highly expressed in the tumorigenic lesions. Although fgf8 overexpression is known to be associated with breast and prostate cancer in mammals, this study provides the first evidence that fgf8 misregulation can lead to neural tumors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proviral insertions in the zebrafish hagoromo gene, encoding an F-box/WD40-repeat protein, cause stripe pattern anomalies

The zebrafish, Danio rerio, has three types of pigment cells (melanophores, xanthophores and iridophores) and, in adult fish, these cells are organized into a stripe pattern. The mechanisms underlying formation of the stripe pattern are largely unknown. We report here the identification and characterization of a novel dominant zebrafish mutation, hagoromo (hag), which was generated by insertion...

متن کامل

Differential requirements for Fgf3 and Fgf8 during mouse forebrain development.

Multiple Fgfs are expressed during formation and patterning of the telencephalon in vertebrates. Fgf8 has been shown to control the size of the telencephalon and the development of signaling centers in zebrafish and mouse. Next to Fgf8, Fgf3 also influences telencephalic gene expression in the zebrafish. Moreover, Fgf3 and Fgf8 have been shown to have combinatorial functions during forebrain de...

متن کامل

Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis.

We describe the isolation of zebrafish Fgf8 and its expression during gastrulation, somitogenesis, fin bud and early brain development. By demonstrating genetic linkage and by analysing the structure of the Fgf8 gene, we show that acerebellar is a zebrafish Fgf8 mutation that may inactivate Fgf8 function. Homozygous acerebellar embryos lack a cerebellum and the midbrain-hindbrain boundary organ...

متن کامل

Zebrafish fgf24 functions with fgf8 to promote posterior mesodermal development.

Fibroblast growth factor (Fgf) signaling plays an important role during development of posterior mesoderm in vertebrate embryos. Blocking Fgf signaling by expressing a dominant-negative Fgf receptor inhibits posterior mesoderm development. In mice, Fgf8 appears to be the principal ligand required for mesodermal development, as mouse Fgf8 mutants do not form mesoderm. In zebrafish, Fgf8 is encod...

متن کامل

Overlapping and distinct functions provided by fgf17, a new zebrafish member of the Fgf8/17/18 subgroup of Fgfs

Members of the fibroblast growth factor (Fgf) family are important signaling molecules in several inductive and patterning processes, and act as brain organizer-derived signals during formation of the early vertebrate nervous system. We isolated a new member of the Fgf8/17/18 subgroup of Fgfs from the zebrafish, and studied its expression and function during somitogenesis, optic stalk and midbr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular cancer research : MCR

دوره 7 6  شماره 

صفحات  -

تاریخ انتشار 2009